Review

G. White

W&B

- Note: CG Forward of Center of Lift
- Recall Units
 - Arm (length say inches)
 - Item (lbs)
 - Moment (in-lbs)
 - CG (length say inches)
- Another Term for Arm
 - Moment-Arm
 - Station

Figure 4-2. Moment of a radio located aft of the datum.

W&B (cont.)

• Recall CG Equation

CG = Total Moments/Total Weight

If CG of Empty Airplane is 30" and Total Moments = 4,200 ft-lbs – what is Empty Weight?

Hint – look at units carefully

Pressure and Density Altitude

- Pressure Altitude is Referenced to 29.92" Hg
 - If Station Pressure is 30.52" Hg and Station Altitude is 1,000'
 - Pressure Altitude = ?
 - Recall for Each 0.1" Increase in Baro, Pressure Altitude Decreases About 100'
 - Therefore 30.52"-29.92" = +0.6" or -600'

– So Pressure Altitude ~ 1,000'-600' = 400'

• When Flying Above 18,000' MSL we Set Altimeter to 29.92" and Thus We Fly Pressure Altitude

Density Altitude

- Density Altitude is Different Than Pressure Altitude in Most Cases
- Varies by Temp, Pressure, and Moisture
 - From Ideal Gas Law
 - -P*V = n*R*T
 - As T Increases and for the Same Volume and Pressure, n (number of gas moles) Must Decrease
 - Therefore, We Have a Higher Density Altitude

Density Altitude (cont.)

DENSITY ALTITUDE CHART

Density Altitude (cont.)

- Molar Mass of Dry Air ~ 28.97 g/mol
- Molar Mass of H2O ~ 18.02 g/mol
- Therefore
 - Adding Water Vapor to Air Reduces Density
 - Same Effect as Increasing Temperature
- A Smaller Effect Than Temp or Pressure
 - Usually Neglected

If Temp or Moisture of Air Increases, Density Altitude Increases

If Pressure of Air Decreases, Density Altitude Increases

Airspace and FAR Review

Jepp DVD